http://samlib.ru/d/dybala_s_l/rassuzdeniya.shtml
Рассуждения о физической геометрии (геометрии вселенных).
Предисловие.
В последнее время всё большее число исследователей приходят к выводу, что выброшенный из современной физики эфир существует. Подавляющее большинство авторов, выдвигая свою концепцию эфира и наделяя его определенными физическими свойствами, оставляют в стороне такую важную его функцию, как образование пространства. Действительно, если признать, что пространство (трёхмерная протяжённость) не может существовать само по себе в пустоте, то следует допустить существование некой среды создающей (формирующей, образующей) это пространство. В современной физике (ОТО) пространство наделяется физическими свойствами, что по сути дела, и есть такая среда.
Весьма маловероятно, что пространствообразующая среда есть самостоятельная сущность, существующая наряду с эфиром. Логичнее всего предположить, что эфир и есть эта среда и образование пространства его важнейшая функция. При таком подходе существование пространства - это доказательство существования эфира, а изучая свойства пространства мы, тем самым, изучаем и свойства эфира. В то же время, следует постоянно помнить о вторичности пространства по отношению к эфиру. Расхожее высказывание “эфир заполняет вселенную” предполагает первичное существование пространства вселенной, как вместилища, заполняемого эфиром, что неверно. Правильно суть отношения эфира и вселенной можно сформулировать так: вселенная состоит из эфира (среды), который образует её пространство.
В настоящей работе предпринята попытка рассмотреть самые общие физико-геометрические свойства пространств разных размерностей, образуемыми соответствующими средами (эфирами). В первой части рассматриваются указанные среды и пространства исходя из того, что они создают единственную вселенную, т.е. других сред (сред других измерений) в природе не существует. Во второй части рассматриваются случаи сосуществования сред и пространств разных размерностей (параллельные вселенные). Далее, в самом общем виде, рассмотрены вопросы существования и сосуществования материи (вещества и поля) разных размерностей. В настоящей работе принята концепция непрерывного, однородного, бесконечно делимого эфира (пространствообразующей среды, далее просто “среды”). Материя (вещество и поле) рассматривается как возбуждённое энергией состояние среды и имеет дискретную структуру.
В работе нет иллюстраций, поэтому чтение её потребует определённого напряжения пространственного воображения.
Введение.
Понятие “пространство”, лежащее в основе любой геометрии, широко используется людьми в различных отраслях знания. С этим понятием мы встречаемся на каждом шагу – мы находимся в пространстве, двигаемся в пространстве, весь мир вокруг нас существует в пространстве. Однако, далеко не каждый задумывается о том, что же такое пространство и какова его природа.
Математические пространства - это абстрактные построения, некоторые из которых могут рассматриваться как математические модели реального физического пространства. Наибольшее распространение получила модель плоского однородного непрерывного пространства, называемого евклидовым. Эта модель лежит в основе евклидовой геометрии (той, которую все мы изучали в школе). В физике используется также плоская псевдоевклидова геометрия Минковского и неплоская риманова геометрия (обе на основе единого пространства-времени).
Реальное физическое пространство в определённой степени соответствует математическим моделям, что позволяет физикам изучать его формально-математическими методами, однако полного соответствия модели реальности не будет достигнуто никогда. Вопрос стоит о максимально возможном приближении модели к реальному пространству, а для этого необходимо знать его природу, или, по крайней мере, иметь достаточно реалистичную гипотезу о природе пространства.
Подробное рассмотрение гипотез о природе пространства не входит в рамки настоящей работы. Здесь мы отметим только то, что названные гипотезы можно разделить на две группы – в первой пространство может существовать в пустоте, а во второй не может, поскольку создаётся (образуется, формируется) пространствообразующей материальной средой (эфиром). Для нас важно, что все известные геометрии базируются на пространстве из первой группы. Между тем, гипотезы второй группы получают всё большее распространение, однако своей специфической геометрии не имеют, хотя очевидно, что пространствообразующая среда должна накладывать на геометрию свой отпечаток. Цель настоящей работы – наметить общие контуры такой геометрии, назовём её “физической геометрией”, а пространство этой геометрии – “физическим пространством” (далее в тексте просто “пространством”).
1. Определения.
Считаю весьма полезным дать определения используемых терминов. Единственная цель этого шага - пояснить понимание терминов автором.
Пустота - отсутствие любой физической реальности - вещества, поля, эфира, среды, значит, и пространства. Математический эквивалент пустоты ноль. Пустота - это ничто. Тем не менее, и пустоте приписывают некоторые свойства, например пустота, может быть “занята” материей, сколь угодной мерности (что небесспорно). Именно так представляют пустоту сторонники теории “большого взрыва” - это то, в чём находилась первоначальная сингулярность. Такой подход представляется спорным. Более логично считать, что ничего не имеет никаких свойств. Эта точка зрения и принята в настоящей работе.
Среда (эфир) - сущность из которой состоят вселенные и миры, и которая образует их пространства.
Пространство (реальное физическое пространство) - n-мерная протяжённость, образованная соответствующей n-мерной средой. Объективная реальность, “вместилище всего сущего”, “арена действий”, на которой разворачиваются события, физические процессы, явления, место локализации физических объектов и место их возможной локализации при движении.
Непрерывность среды и пространства - отсутствие в среде и пространстве разрывов, пустот, отсутствие границ между любыми сколь угодно малыми соседними их элементами, произвольная бесконечная делимость элементов среды и пространства.
Протяжённость - расстояние между двумя точками пространства, между двумя физическими или геометрическими объектами в пространстве, размер объекта (физического, геометрического), или путь проходимый физическим объектом при движении.
Размерность физического пространства - количество измерений пространства (независимых направлений протяженности). Для моделей пространства - количество осей декартовых координат, минимальное количество параметров, необходимое для нумерации точек (элементов) пространства.
Измерение пространства - независимое направление протяжённости в пространстве, движение объекта вдоль которого не приводит к изменению положения объекта относительно других независимых направлений (измерений). Например, автомобиль движется вдоль прямой горизонтальной дороги, которая может считаться одним из независимых направлений (измерений) рассматриваемого трёхмерного пространства (вперёд-назад). При движении изменяется положение автомобиля только в этом направлении, в то время как положение относительно других независимых направлений (измерений) - вправо-влево и вверх-вниз, не изменяется.
Кривизна физического пространства - качественная характеристика реального пространства, отражающая отклонение его структуры от плоской.
Вселенная - n-мерная среда, образующая n-мерное пространство.
Мир - n-мерная среда, образующая n-мерное пространство, в котором находятся (движутся или покоятся) множество вселенных, состоящих из сред меньшей мерности, которые образуют соответствующие пространства.
Предельный минимальный размер - размер материального объекта, меньше которого в природе не существует, квант длины, фундаментальная длина. Относится только к материи. При бесконечном делении пространства теоретически возможен сколь угодно меньший размер, однако практически он не достижим, поскольку любой инструмент состоит из материи.
Движение - изменение состояния среды.
Движение механическое - перемещение физического объекта последовательно из одной точки пространства в другую, затем в третью и т.д., что тоже есть изменение состояния среды.
Энергия - сущность, вызывающая движение, причина движения.
Линия - след от движения точки в пространстве.
Поверхность (плоская фигура) - след от движения линии в пространстве.
Объёмная фигура - след от движения поверхности в пространстве.
Геометрическая фигура - воображаемое геометрическое образование, не могущее реально самостоятельно существовать в данном пространстве в случае, если оно принадлежит единственной вселенной. Например, одномерная линия в двухмерном и трёхмерном пространствах; двухмерная плоскость в трёхмерном пространстве.
Геометрический объект - воображаемое геометрическое образование, могущее реально самостоятельно существовать в данном пространстве, если оно принадлежит единственной вселенной. Например: одномерный отрезок в одномерном пространстве, двухмерная плоскость в двухмерном пространстве, трёхмерный куб в трёхмерном пространстве.
Физический (материальный) объект - реально существующий в материальном виде геометрический объект.
Материя - вещество и поле. Поскольку мы приняли, что материя - это возбуждённое энергией состояние среды (эфира), то материя - это та же среда (тот же эфир), но в определённом состоянии.
2. Пространство как физикогеометрическая категория
Пространство, несмотря на то, что является объективной реальностью (т.е. существует независимо от нашего сознания, от нашего присутствия и вообще от нашего существования), всё же категория нематериальная, т.е. это не какой-то вид, форма материи или её состояние, как вещество или поле. По современным представлениям, принятым в СТО пространство может существовать в пустоте, там же могут распространяться и электромагнитные волны. Какого-то внятного объяснения природы пространства упомянутые теории не дают, а оперируют математическими моделями реального пространства. Насколько эти модели близки к последнему, вопрос открытый. Прежде всего, непонятно, что же создаёт протяжённость и размерность в пустоте. Наиболее распространённое объяснение - пространство создаётся всеми физическими объектами вселенной (планетами, звёздами, галактиками), которые в макромасштабе являются точками в огромном пространстве пустоты. Т.е. пространство относительно - не будет физических объектов, не будет и пространства. В то же время, считается непреложной истиной - материя (то, из чего состоят физические объекты) существует в пространстве (и во времени). Выходит материя создаёт пространство и в нём же существует? Пространство, созданное по этой схеме должно быть принципиально неоднородным, что противоречит всем физическим наблюдениям.
Хотя ОТО и опирается на вышеописанное представление о реальном физическом пространстве, модель, используемая в этой теории описывает пространство как некую физическую среду, что отмечал ещё Эйнштейн. Вещество в этой теории - “сгущённое пространство”, т.е. сгущённая среда. Таким образом, понятие “пространство” в современной физике достаточно противоречиво.
Представление о том, что пространство создаётся некой средой, существовало и до Эйнштейна и разделялось многими учёными. На роль этой среды выдвигался эфир. В настоящее время, многие физики предпочитают вообще обходить вопрос о природе пространства и пользуются в своих исследованиях только математическими моделями.
Не вдаваясь в дискуссии, отмечу, что в настоящей работе гипотетически принято представление о пространстве, созданном (образованным, сформированным) пространствообразующей средой. Пространство - это атрибут, свойство среды.
Свойства среды определяют свойства пространства, ею образованного. Однородная изотропная среда создаёт однородное изотропное пространство. Непрерывная среда создаёт непрерывное пространство. Одномерная среда создаёт одномерное пространство, двухмерная – двухмерное, а трёхмерная среда создаёт трёхмерное пространство, в котором мы существуем. Существуют ли в природе одно- и двухмерные среды и пространства мы не знаем и оставляем этот вопрос открытым. Далее мы рассмотрим такие среды, как будто они существуют.
Формулировка “материя существует в пространстве” некорректна, т.к. предполагает некое отдельно существующее “внешнее” пространство, в котором существует материя. Более правильно отношение материи и пространства можно сформулировать так: “пространство существует в среде, (эфире)”. (Напомним, по нашим представлениям, материя - это определённое состояние среды). В пустоте, где нет среды, нет и пространства - нет протяжённости и размерности.
Математические модели пространства, например, метрическое пространство, включают такие характеристики, как протяжённость (размер, длина), размерность, кривизна. Эти характеристики для конкретной модели могут быть вычислены и выражаются конкретными числами, т.е. являются количественными характеристиками. Реальному физическому пространству тоже можно приписать аналогичные характеристики, но это будут качественные характеристики, позволяющие судить только о наличии определённого свойства пространства. Например, двухмерное пространство, образованное двухмерной сферой, отличается от такого же пространства, образованного двухмерной плоскостью. Мы можем качественно установить факт неплоскостности (кривизны) пространства сферы, но вычислить величину кривизны мы сможем, только введя определённую математическую модель. Другими словами, свойства реального физического пространства так же объективны, как и само пространство и не зависят от наличия исследователя, использующего определённую модель. Будем также постоянно помнить, что пространство вторично по отношению к среде, его образующей . Пространство - это свойство среды.
Далее в тексте выражения “элемент пространства” и “точка” будем понимать как элемент среды, имеющий сколь угодно малый размер, значит и протяжённость, а так же соответствующую размерность.
Отметим, что по наблюдениям физиков, наше пространство это жёсткая однородная и изотропная структура, поэтому среда, которая его образует тоже жёсткая, однородная и изотропная. Кроме того, из других физических фактов (распространение электромагнитных поперечных волн, продольных электрических волн), следует, что среда нашей вселенной (эфир) достаточно твёрдая и упругая. Эта среда никак не может быть “тончайшей всепроникающей субстанцией”, каковым часто представляли эфир в прошлом.
3. Пространства единственных в природе вселенных некоторых размерностей
3.1. Нульмерное пространство.
Размерность равная нулю не имеет ни одного измерения, ни одного размера, что соответствует пустоте, где нет среды и поэтому нет пространства. Абстрактная нульмерная точка математиков может служить моделью нульмерного пространства – она не имеет размеров и размерности. Однако эта точка не может принадлежать никакому пространству имеющему размерность больше нуля, поскольку из таких точек не составишь никакой геометрической фигуры – ни одномерной линии, ни двухмерной поверхности, ни, тем более, трёхмерной фигуры. Нуль останется нулем, сколько его ни суммируй.
3.2. Одномерное пространство.
Одномерное пространство, имеющее только одно измерение, образуется одномерной непрерывной однородной средой. Такое пространство представляет собой нить (линию). Для определённости и простоты здесь и далее будем рассматривать в качестве линии – прямую, в качестве поверхности – плоскость, в качестве объёмной фигуры – куб.
Итак, одномерная бесконечная нить (одномерная материальная среда) образует одномерное пространство – прямую Х, причём эта нить и есть вся вселенная и вселенная эта единственная в природе (в этой главе рассматриваются только такие случаи) . В этом пространстве только одно измерение, совпадающее с этой прямой. Прямую Х можно представить состоящей из воображаемых элементов (“точек”) - отрезков стремящегося к нулю размера dx , примыкающих друг к другу без зазоров. Других размеров у этих отрезков нет, не существует вообще. Воображаемые элементы потому, что в реальности их не существует, т. к. пространство Х непрерывно и границы между элементами dx реально нет. На всём протяжении прямой Х размер отрезков должен быть в точности одинаков и равен dx , что говорит об однородности (изотропности) пространства Х . Отметим, что здесь и далее значком dx ( dy , dz ) обозначается бесконечно малая величина, стремящаяся к нулю (дифференциал), имеющая, тем не менее, все признаки пространства - протяжённость и размерность.
Напомним, что вселенная, в данном случае, состоит из одномерной материальной среды. Тогда прямая Х и есть единственное пространство вселенной – ведь других размеров, в этом случае, в природе не существует. Мы сами трёхмерные образования и существуем в трёхмерном мире, мы легко можем вообразить сколь угодно много одномерных прямых, пересекающихся и не пересекающихся с прямой Х . Однако это будет уже другой случай – одномерные пространства в пространстве трёхмерном, т. к. наша вселенная трёхмерна. Случаи существования пространства в пространстве и пересечения пространств подробнее будут рассмотрены далее, в главе 4 о пространствах миров.
Сечение одномерной линии Х – это нульмерная точка, следовательно, сечение одномерного пространства – нульмерное пространство.
Геометрические фигуры в одномерном пространстве – это только нульмерные точки, не имеющие никаких размеров и, значит, не могущие реально существовать в таком пространстве. Геометрические объекты одномерного пространства – одномерные отрезки прямой – они могут реально существовать в этом пространстве, т. к. являются его частью.
3.3. Двухмерное пространство.
Двухмерное пространство образуется двухмерной средой и имеет два измерения.
Рассмотрим бесконечный плоский двухмерный лист, представляющий двухмерную вселенную. Двухмерная среда, из которой он состоит, образует двухмерное пространство А, измерения которого обозначим X и Y . Это означает, что на данном листе можно произвольно выбрать две перпендикулярные прямые X и Y , вдоль которых можно откладывать независимые размеры двухмерного пространства, назовём их условно длина ( X ) и ширина ( Y ). Третьего, привычного нам размера, толщины, у листа нет.
Элементы (точки) двухмерного пространства А представляют собой воображаемые прямоугольнички со сторонами dx и dy . Если пространство А непрерывно и изотропно, то размеры dx и dy равны между собой, а элементы представляют собой квадратики, размеры которых одинаковы во всём пространстве. Можно сказать, что двухмерное пространство есть сумма двухмерных элементов с размерами dx и dy . Следовательно, двухмерное пространство не может быть образовано одномерными элементами dx или dy , поскольку такие элементы имеют только один размер, они не принадлежат двухмерному пространству и образованы не двухмерной средой. Так же как одномерная линия не может быть образована нульмерными точками, так и двухмерная поверхность не может образовываться одномерными линиями или представляться как их сумма. Двухмерное пространство образовывается только двухмерной средой.
Линия двухмерного пространства имеет длину L и ширину ( dx или dy ), т.е. является двухмерным геометрическим объектом (в отличии от одномерной линии, имеющей только длину). Пересечение двухмерных линий – это двухмерная точка размерами ( dx , dy ). Имеет смысл говорить о площади двухмерного отрезка и площади точки в двухмерном пространстве. Сечение двухмерной линии – одномерный отрезок ( dx или dy ). Сечение двухмерного пространства – одномерное пространство.
Геометрические фигуры в двухмерном пространстве – это нульмерные точки, одномерные линии и их отрезки, а также всевозможные фигуры, образованные одномерными линиями и отрезками.
Геометрические объекты в двухмерном пространстве – двухмерные линии и их отрезки, и геометрические фигуры, образованные двухмерными линиями и их отрезками, а также области двухмерного пространства, заключенные в этих фигурах.
3.4. Трёхмерное пространство.
Трехмерное пространство имеет три измерения и образуется трёхмерной средой. Это пространство, которое нас окружает, и в котором существуем мы и весь наш мир. Наша вселенная состоит из такой трёхмерной среды.
В любой точке трёхмерного пространства можно мысленно провести три взаимно перпендикулярные прямые, направления которых можно условно назвать вперёд-назад, влево-вправо, вверх-вниз. Это и будут три измерения пространства, которые обозначим X , Y , Z .
Элементы (точки) трёхмерного пространства условно представляют собой воображаемые кубики с равными сторонами dx , dy , dz , если пространство однородное. Всё пространство можно представить состоящим из этих кубиков, вплотную без зазора примыкающих друг к другу, поскольку пространство непрерывное. Трёхмерное пространство не может быть образовано одномерными элементами dx или dy или dz , а также двухмерными элементами dx , dy или dy , dz или dz , dx , поскольку все эти элементы не принадлежат трёхмерному пространству и образованы не трёхмерной средой.
Трёхмерное пространство не может быть также образовано одномерными линиями или двухмерными плоскостями, т. е. не может быть представлена как сумма одномерных или двухмерных пространств.
Линия в трёхмерном пространстве имеет три измерения (например, длину Х , ширину dy и толщину dz ) и является трёхмерным геометрическим объектом. Сечение этой линии – двухмерный квадрат, например dy , dz . Сечение трёхмерного пространства – двухмерное пространство.
Если вселенная состоит из трёхмерной материальной среды, образующей трёхмерное пространство, и она единственная в природе, то в природе не существует других вселенных одно-, двух- или трёх- и более мерных. Однако существует вероятность, что наша трёхмерная вселенная является трёхмерным миром, в котором существуют одно- и двухмерные параллельные вселенные (хотя это и весьма умозрительно). Трёхмерных параллельных вселенных, в этом случае, быть не может, даже умозрительно.
Геометрические фигуры в трёхмерном пространстве – это все геометрические фигуры и объекты одномерного и двухмерного пространств.
Геометрические объекты - трёхмерные линии и их отрезки, фигуры, образованные такими линиями и отрезками, а также области трёхмерного пространства, заключенные в этих фигурах.
3.5 Четырёхмерное пространство.
Если одно- двух- и трёхмерное пространство мы легко можем себе представить, то четырёхмерное воспринимается как чисто математическая абстракция (математики оперируют n -мерными пространствами, где n – любое число). Вопрос о реальности существования четырёх и более мерного физического пространства оставим открытым (некоторые физические теории используют такие пространства). Здесь мы рассматриваем четырёхмерное физическое пространство, как бы существующее, для того, чтобы выявить некоторые эффекты в пространстве трёхмерном, которые могут иметь место, если наша трёхмерная вселенная существует, как одна из многих подобных, в четырёхмерном мире.
Итак, четырёхмерное пространство должно образовываться четырёхмерной средой. В таком пространстве четыре измерения, обозначим их X , Y , Z , Q . Воображаемые элементы (точки) такого пространства, в случае его непрерывности и однородности, представляют собой четырёхмерные кубики с одинаковыми размерами dx , dy , dz , dq . Одномерные, двухмерные или трёхмерные элементы не могут образовывать четырёхмерное пространство ни в какой комбинации, т. к. у этих элементов нет достаточного количества измерений, они не принадлежат четырёхмерному пространству - четырёхмерная вселенная состоит только из четырёхмерной среды.
Линия четырёхмерного пространства, как и точка - это четырёхмерные геометрические объекты. Имеет смысл говорить о четырёхмерном объёме этих объектов. Сечение четырёхмерной линии - трёхмерный кубик. Сечение четырёхмерного пространства - это трёхмерное пространство, причём наше пространство с измерениями X , Y , Z , одно из четырёх возможных вариантов сечений. Действительно, ещё возможны сечения с измерениями Y , Z , Q и Z , Q , X и Q , X , Y , которые не являются такими же пространствами, в котором мы существуем.
Геометрические фигуры четырёхмерного пространства - это все геометрические фигуры и объекты одно-, двух- и трёхмерных пространств.
Геометрические объекты четырёхмерного пространства - это четырёхмерные линии и их отрезки, фигуры, образованные этими линиями и отрезками, а также области пространства, заключённые внутри этих фигур.